UA-11904844-8

Способы получения высоких и низких температур

Способы получения низких температур

Термодинамическая температура

Классическая термодинамика подразумевает скрытое движение частиц, выражаемое температурой. Это положение является в термодинамике столь важным, что его иногда называют нулевым началом термодинамики, чтобы подчеркнуть его принципиальное значение как исходной предпосылки, и формулируют в виде аксиомы: все тела при тепловом равновесии обладают температурой.

Температура определяется интенсивностью теплового движения молекул и атомов. Чем быстрее они двигаются в веществе, тем выше его температура. Когда вещество охлаждается, тепловое движение его частиц затухает. Если же тепловое движение совсем прекратится, дальнейшее понижение температуры станет невозможным. Такую наинизшую температуру называют абсолютным нулем и принимают ее за начало отсчета в абсолютной температурной шкале, носящей имя английского физика Кельвина. Кельвин (К) – единица термодинамической температуры – одна из основных единиц Международной системы единиц (СИ). Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Для удобства практики взята близкая к ней точка таяния льда 273,15 К, соответствующая 0° С шкалы Цельсия. Поэтому температура в кельвинах (Т) связана с температурой в градусах Цельсия (t) соотношением

Т = 273,15 K + t.

Бесконечно малое изменение температуры в градусах шкалы Цельсия и Кельвина одно и то же :

dT = dt

Повседневный опыт убеждает нас в том, что при контакте двух тел с разной температурой тепло самопроизвольно переходит от более нагретого тела к менее нагретому и температуры обоих тел становятся равными. Передача тепла от менее нагретого тела к телу более высокой температуры никогда не происходит самопроизвольно. Чтобы осуществить такую передачу, надо затратить энергию – механическую, электрическую, химическую или какую-нибудь другую.

Передачу тепла от холодного тела в окружающую среду, имеющую более высокую температуру, можно рассматривать как получение холода. Тогда под холодом надо подразумевать количество тепла, которое отнимается от охлаждаемого тела. Количество холода не пропорционально затраченной работе: чем ниже температура охлаждаемого тела, тем больше нужно работы, чтобы получить то же количество холода. Особенно сильно возрастает затрата работы на охлаждение вблизи абсолютного нуля. Например, чтобы получить холод на температурном уровне 3 К (–270° С), нужно затратить в 1000 раз больше работы, чем для получения того же количества холода при температуре 270 К (–3° С). При абсолютном же нуле затрата работы для получения холода должна быть равна бесконечности. Это показывает, что охладить тело точно до 0 К вообще невозможно.

Понижение температуры меняет свойства многих тел. Например, мягкая и упругая резина становится при температуре около 200 К жесткой и от удара молотком раскалывается, как стекло. Так же ведут себя многие металлы, например, сталь, свинец. Если из свинца сделать колокольчик и охладить его в жидком азоте, он будет издавать мелодичный звон: свинец станет твердым. Но есть металлы и сплавы, в которых понижение температуры увеличивает прочность, оставляя им достаточную пластичность. Таковы, например, медь, ее сплавы и алюминий. Именно из этих металлов изготовляют аппараты, которые используются при низких температурах.