Современные способы получения низких температур
Испаряя жидкий гелий в вакууме, можно получить температуру всего на 0,7 К больше абсолютного нуля. Еще более низкую температуру (до 0,3 К) дает сжиженный изотоп гелия 3Не.
Чтобы охладить какой-либо предмет до нужной температуры, достаточно поместить его в ванну с соответствующим сжиженным газом. Таким образом, основная задача при получении очень низких температур – это сжижение газов. Его можно добиться двумя методами.
Первый метод – дросселирование, то есть расширение сжатого газа в вентиле. При таком расширении молекулы газа преодолевают силу взаимного притяжения, их тепловое движение замедляется, и газ охлаждается. Этот метод применяется в простейших установках для ожижения газов. Газ сжимают компрессором, охлаждают в теплообменнике и расширяют в дроссельном вентиле. При таком расширении часть газа ожижается.
У каждого газа есть определенная температурная точка – инверсионная температура. При дросселировании газа, находящегося выше инверсионной температуры, он уже не охлаждается, а нагревается. Поэтому применять метод дросселирования можно только предварительно охладив газ ниже его инверсионной температуры. Для большинства газов инверсионная температура выше комнатной, но у водорода она равна 193 К (–80° С), а у гелия даже 33 К (–240° С).
При другом способе получения холода сжатый газ заставляют не только расширяться, но и совершать механическую работу в цилиндре с поршнем или в турбине. Молекулы газа, ударяясь о поршень или о лопатки турбины, передают им свою энергию; скорость молекул сильно снижается, и газ интенсивно охлаждается. Расширительные машины, применяемые при этом способе, называются детандерами. Они могут быть поршневого или турбинного типа. На рисунке 2 показано, как устроен аппарат для ожижения гелия с поршневым детандером. В аппарат из компрессора поступает гелий, сжатый при комнатной температуре давлением около 20 атмосфер. Сжатый гелий предварительно охлаждается в теплообменнике и в ванне с жидким азотом. Большая часть сжатого гелия расширяется в поршневом детандере, а гелий, оставшийся сжатым, охлаждается холодным газом до 11-12 К и после теплообменника расширяется в дроссельном вентиле. При этом часть газа превращается в жидкость и скапливается в сборнике.
Гелий, оставшийся в газообразном состоянии, подается в теплообменник для охлаждения следующих порций газа, нагревается до комнатной температуры и вновь сжимается компрессором. При этом сжижается примерно 10% подаваемого в аппарат гелия. Для теплоизоляции от окружающей среды, все холодные узлы аппарата помещены в герметичный кожух – своеобразный термос, в котором поддерживается высокий вакуум.
Жидкий гелий представляет собой бесцветную легкую жидкость, плотность которой в 8 раз меньше, чем у воды. Он кипит под атмосферным давлением при температуре около 4 К. Жидкий гелий используется обычно для охлаждения исследуемых веществ до температуры, близкой к абсолютному нулю. Водород, азот и другие газы сжижают примерно теми же методами, но соответственно при более высокой температуре.
Исследование низких температур привело к открытию двух удивительных явлений – сверхпроводимости и сверхтекучести. Оба эти явления весьма отличаются от свойств, которыми обладают вещества при обычных температурах и могут быть объяснены только с помощью квантовой механики.