UA-11904844-8

Рассмотрим один из способов расхождения двух электронов (рис. 10.3). Один из входящих перескакивает из точки А в точку Х, по дороге испуская фотон. Вроде все как всегда, но в данном случае электрон поворачивает во времени — обратно в точку Y, где поглощает еще один фотон, и направляется в будущее, в котором он может быть обнаружен в точке С.

антиматерия

Рис. 10.3. Антиматерия... или электрон, который движется назад во времени

Эта диаграмма никак не противоречит правилам перехода и рассеяния, потому что электрон испускает и поглощает фотоны в точном соответствии с предписаниями теории. Это может произойти в соответствии с правилами, а стало быть, действительно происходит. Но подобное поведение, судя по всему, нарушает правила здравого смысла, потому что приходится принять тот факт, что электроны движутся назад во времени. Это интересная научная фантастика, но нарушениями причинно-следственных связей Вселенную не построишь. Кроме того, таким образом квантовая теория, кажется, вступает в конфликт со специальной теорией относительности Эйнштейна.

Впрочем, как ни странно, подобные путешествия во времени не запрещены субатомным частицам, как в 1928 году установил Дирак. Мы можем понять, почему все не так невероятно, как кажется, если переистолковать происходящее на рис. 10.3 с точки зрения «движения вперед». Достаточно вести отсчет событий на диаграмме слева направо. Начнем со времени Т = 0, когда существует мир всего из двух электронов, находящихся в точках А и В. Мы продолжаем рассматривать мир из двух электронов до времени T1, когда нижний электрон испускает фотон; между временными точками Т1 и Т2 мир состоит из двух электронов и одного фотона.

Во время Т2 фотон погибает и заменяется электроном (который заканчивает свой путь в точке С) и второй частицей (финиширующей в точке Х). Эту вторую частицу мы не можем назвать электроном, потому что это «электрон, который движется назад во времени».

Вопрос вот в чем: как выглядит электрон, который движется назад во времени, с точки зрения наблюдателя (например, с вашей), двигающегося вперед во времени?

Для ответа на этот вопрос представим, что мы ведем видеосъемку электрона, двигающегося поблизости от какого-то магнита, как показано на рис. 10.4. Если электрон движется не слишком быстро*, он будет совершать обычные круговые движения. Возможность отклонения электронов магнитом — это, как мы уже говорили, основная идея работы не только старомодных телевизоров на катодно-лучевых трубках, но и ускорителей частиц, в том числе Большого адронного коллайдера.

* Это технический момент: важно, чтобы электрон при движении испытывал примерно одинаковую силу магнитного притяжения.

электрон

Рис. 10.4. Электрон, движущийся вокруг магнита

А теперь представьте, что будет, если пустить видеозапись задом наперед. Именно так «электрон, который движется назад во времени» и будет выглядеть с точки зрения наблюдателя, который «движется вперед во времени». Теперь мы видим, как «движущийся назад во времени» электрон вращается в противоположном направлении по мере того, как идет запись. С точки зрения физика видеозапись частицы, движущейся назад во времени, идентична видеозаписи частицы, движущейся вперед во времени, с тем исключением, что эта частица будет нести положительный электрический заряд. Итак, мы получили ответ на свой вопрос: электроны, движущиеся назад во времени, выглядят как «электроны с положительным зарядом».

Таким образом, если электроны действительно совершают путешествия назад во времени, мы можем ожидать, что столкнемся к некими «электронами с положительным зарядом».

Такие частицы действительно существуют и называются «позитронами». Понятие этих частиц ввел в начале 1931 года Дирак, чтобы решить проблему, вставшую при выводе квантово-механического уравнения для электрона: уравнение, судя по всему, предсказывало существование частиц с отрицательной энергией. Позднее Дирак рассказал, о чем думал в этот момент, и признался, в частности, что был твердо уверен в правильности математики:

«Я смирился с тем фактом, что отрицательные энергетические состояния нельзя исключить из математической теории, и решил, что нужно просто найти для них физическое объяснение».

Всего через год Карл Андерсон, который, судя по всему, не был знаком с предсказаниями Дирака, заметил некоторые странности в работе своего экспериментального аппарата по наблюдению частиц из состава космического излучения. Он сделал следующий вывод:

«Кажется необходимым призвать на помощь положительно заряженную частицу, масса которой сопоставима с массой электрона».

Это еще один образец всей мощи математических рассуждений. Чтобы объяснить математическое уравнение, Дирак ввел идею новой частицы — позитрона, и уже через несколько месяцев было обнаружено, что эта частица порождается в столкновениях частиц космического излучения.

Позитрон — наша первая встреча с краеугольным камнем научной фантастики: антиматерией.

Вооружившись интерпретацией путешествующих во времени электронов как позитронов, мы можем закончить работу по объяснению рис. 10.3. Нужно сказать, что, когда фотон достигает точки Y во время T2, он распадается на электрон и позитрон. Каждая из этих частиц движется вперед до времени T3, когда позитрон из точки Y достигает точки X, где сливается с исходным верхним электроном и производит второй фотон. Этот фотон распространяется до времени T4, когда он поглощается нижним электроном.

Может показаться, что все это несколько притянуто за уши: античастицы появились из нашей теории, потому что мы разрешили частицам путешествовать назад во времени. Правила перехода и рассеяния позволяют частицам перескакивать как вперед, так и назад во времени, и несмотря на то, что мы, возможно, хотели бы им это не позволить, оказывается, что мы не можем и не должны им в этом препятствовать. Более того, оказывается, что, если мы не разрешаем частицам перескакивать назад во времени, как раз тогда и нарушается закон причины и следствия. Это странно: кажется, что должно быть ровно наоборот.

Однако все не случайно и намекает на лежащие в основе глубинные математические структуры. Возможно, у вас создалось впечатление, что правила перехода и рассеяния частиц установлены как-то произвольно. Можно ли установить еще какие-то правила рассеяния и подрегулировать правила перехода и изучить последствия? Но если сделать так, мы почти наверняка получим плохую теорию — например, такую, которая будет нарушать закон причины и следствия.

Квантовая теория поля (QFT) — название той самой глубинной математической структуры, которая и лежит в основе правил перехода и рассеяния. Удивительно, но это единственный способ создать квантовую теорию мельчайших частиц с учетом специальной теории относительности. Вооружившись аппаратом квантовой теории поля, правила перехода и рассеяния частиц становятся незыблемыми, и мы лишаемся свободы выбора. Это очень важный результат для исследователя фундаментальных законов, потому что использование «симметрии» для устранения выбора создает впечатление, что Вселенная просто должна быть «вот такой», и это создает ощущение лучшего ее понимания. Мы использовали здесь слово «симметрия», потому что оно кажется очень подходящим: можно считать, что теории Эйнштейна накладывают симметрические ограничения на структуру пространства и времени. Иные «симметрии» еще более ограничивают правила перехода и рассеяния.

Прежде чем закончить с квантовой электродинамикой, необходимо устранить последнее непонимание. Как вы помните, первый доклад на конференции в Шелтер-Айленде касался лэмбовского перехода — аномалии в спектре водорода, которая не объяснялась в рамках квантовой теории Гейзенберга и Шрёдингера. Через неделю после этой встречи Ганс Бете выдал первые, еще приблизительные вычисления ответа. На рис. 10.5 показан атом водорода с точки зрения квантовой электродинамики.

атом водорода

Рис. 10.5. Атом водорода

Электромагнитное взаимодействие, связывающее протон и электрон, можно представить в виде ряда диаграмм Фейнмана возрастающей сложности, как и в случае с двумя взаимодействующими электронами на рис. 10.1. Мы изобразили две простейшие возможные диаграммы на рис. 10.5. До квантовой электродинамики расчеты энергетических уровней электрона включали в себя только верхнюю диаграмму на рисунке, которая отражает физику электрона, удерживаемого в потенциальной яме, которая создана протоном.

Но мы уже выяснили, что при взаимодействии может произойти еще много всего. Вторая диаграмма на рис. 10.5 показывает кратковременную флуктуацию фотона в электрон-позитронной паре, и этот процесс тоже стоит учесть при расчете возможных энергетических уровней электрона. Эта диаграмма, как и многие другие, вносит в результат подсчетов (впервые предсказанный Бором в 1913 году) небольшие коррективы.

Бете совершенно справедливо включил в расчеты важные результаты «однопетлевых» диаграмм, подобных изображенным на рисунке, и обнаружил, что они оказывают некоторое влияние на сдвиг энергетических уровней, а следовательно, и на видимый спектр. Его результаты соответствовали измерениям Лэмба. Иными словами, квантовая электродинамика заставляет представить атом водорода в виде невероятной какофонии субатомных частиц, порождающихся и прекращающих существование. Лэмбовский сдвиг стал первой непосредственной встречей человечества с этими эфирными квантовыми флуктуациями.

Прошло немного времени — и эстафетную палочку перехватили двое других участников встречи в Шелтер-Айленде: Ричард Фейнман и Джулиан Швингер. Через пару лет квантовая электродинамика уже развилась в ту теорию, которую мы знаем сейчас, — прототип квантовой теории поля и образец для тех теорий, которым еще предстояло появиться на свет и которые описывали сильное и слабое взаимодействия.

За свои заслуги Фейнман, Швингер и японский физик Синъитиро Томонага в 1965 году получили Нобелевскую премию «За фундаментальные работы по квантовой электродинамике, имевшие глубокие последствия для физики элементарных частиц». К этим глубоким последствиям мы и переходим.

Брайан Кокс, Джефф Форшоу. Квантовая вселенная.